The Crystal and Molecular Structure of Unsolvated μ -Oxo-bis-[N,N'-ethylenebis(salicylaldiminato)iron (III)]

By J. E. DAVIES AND B. M. GATEHOUSE

Chemistry Department, Monash University, Clayton, Victoria, Australia 3168

(Received 25 April 1973; accepted 25 April 1973)

The crystal and molecular structure of unsolvated [Fe(salen)]₂O (salen = N,N'-ethylenebis(salicylaldiminato) anion) has been determined by single crystal X-ray analysis and refined to an R of 0.052 with diffractometer data. The crystals are triclinic, space group $P\bar{1}$, with Z=2 and a=10.949, b=11.064, c=13.812 Å, $\alpha=112.10$, $\beta=106.85$, $\gamma=77.41^{\circ}$. The molecular conformation is very similar to that observed for the same molecule in the two solvated crystal structures [Fe(salen)]₂O.2py and [Fe(salen)]₂O.CH₂Cl₂. The Fe-O-Fe bridge is symmetrical within experimental error with an Fe-O (bridge) bond length of 1.78 Å and an Fe-O-Fe angle of 145°.

Introduction

Considerable attention has recently been given to oxygen-bridged iron(III) complexes of the type LFe-O-FeL where the attached ligand (L) can be a Schiff base, porphyrin, diimine or HEDTA. The complexes behave as discrete binuclear clusters, and the large anti-forromagnetic exchange between the two iron(III) centres appears to be chiefly a property of the Fe-O-Fe bridge but virtually independent of the nature of L ($2J = c.a - 200 \text{ cm}^{-1}$ in all cases).

The crystal structures of several molecules containing such an Fe-O-Fe bridging arrangement have now been determined and these are documented in Table 1. Two solvated structures of [Fe(salen)]₂O have been reported (one with pyridine and the other with dichloromethane as lattice solvent) and in both cases the Fe-O-Fe angle is approximately 140°, considerably less than the Fe-O-Fe angles in the other structures listed in Table 1 which range from 164-175°. From the now considerable data available it is still not clear what controls the Fe-O-Fe angle in a given compound, for ligand repulsions, electronic and crystalpacking effects can all conceivably play an important role. The effect of crystal packing can best be investigated by examining the same molecule in different packing arrangements and for this reason we have determined the crystal structure of unsolvated [Fe(salen)]₂O. There have been numerous previous attempts to obtain single-crystal samples of this unsolvated dimer in order to make a rigorous interpretation of its electronic structure. However all such attempts were unsuccessful and comparisons of its spectral and magnetic properties have perforce been made with the solvated structures. The single crystals of unsolvated [Fe(salen)]₂O were obtained here by hydrolysis of Fe(salen)acetate in methanol, the method of preparation first used by Pfeiffer, Breith, Lübbe & Tsumaki (1933).

Experimental

An attempt by Mr A. van den Bergen of this Department to recrystallize slowly from methanol a sample of Fe(salen)acetate prepared by the method of Lewis, Mabbs, Richards & Thornley (1969), resulted in large, beautifully formed, deep red, air-stable crystals. Subsequent chemical analysis proved that the material was unsolvated [Fe(salen)]₂O (calc. C, 58·21, H, 4·27, N, 8·49%; found: C, 58·13, H, 4·44, N, 8·39%) and its formation can be rationalized in terms of the equilibrium 2Fe(salen) acetate $+ H_2O \Rightarrow 2CH_3COOH +$ [Fe(salen)]₂O. As [Fe(salen)]₂O is relatively insoluble in methanol, the slow absorption of water from the atmosphere causes crystals of [Fe(salen)]₂O to be gradually deposited from the solution.

Preliminary rotation, oscillation and Weissenberg photographs taken with Cu $K\alpha$ radiation indicated that the crystals were triclinic. The unit-cell parameters were obtained with one of the standard programs of

Fig. 1. Zero moment test for $[Fe(salen)]_2O$ compared with the theoretical curves for centric (1) and acentric (1) distributions.

Table	1.	Fe-O-Fe	geometries*
Iaure	1.	10-0-10	geometries

	Fe-O-Fe (°)	d (Å)†	Fe–O (Å)	Reference
[Fe(salen)] ₂ O.2py	139-1	0.57	1.820	Gerloch, McKenzie & Towl (1969)
		0.55	1.773	
[Fe(salen)] ₂ O.CH ₂ Cl ₂	142.4	0.57	1.791	(i) Coggon, McPhail, Mabbs & McLachlan (1971)
		0.55	1.797	(ii) Atovmyan, D'yachenko & Soboleva (1970)
$[Fe(HEDTA)]_2O^2$	165.0	0.36	1.80	Lippard, Schugar & Walling (1967)
			1.79	••••••
[Fe(TPP)] ₂ O	174.5	0.50	1.763	Hoffman, Collins, Day, Fleischer,
				Srivastava & Hoard (1972)
[Fe(N-n-propyl-sal) ₂] ₂ O	164	0.51	1.78	Davies & Gatehouse (1972)
		0.55	1.76	
[Fe(<i>N</i> - <i>p</i> -chlorophenyl-sal) ₂] ₂ O	175	0.54	1.76	Davies & Gatehouse (1973)
		0.52	1.77	

* HEDTA = N-Hydroxyethyl-ethylenediaminetriacetato anion. TPP = $\alpha, \beta, \gamma, \delta$ -Tetraphenylporphinato anion. sal = Salicylaldiminato anion.

d = displacement of the iron atoms from the coordination plane.

Table 2. Final positional and thermal parameters*

Numbers in parentheses here and in succeeding tables are estimated standard deviations in the least significant digits. The B values are the parameters in the isotropic temperature factor expression $\exp \left[-B(\sin \theta)^2/\lambda^2\right]$. The U_{ij} are $\times 10^2$ and the atomic scattering factors for FeA, FeB are expressed as $f=f_0 \exp \left[-2\pi^2 (U_{11}a^{*2}h^2 + \ldots + 2U_{23}b^*c^*kl + \ldots)\right]$. (a) Isotropic temperature factors

	x/a	y/b	z/c	В		x/a	y/b	z/c	В
OA	-0.0446(9)	0.1660 (9)	0.3510 (7)	4.0 (2)	OB	0.5042 (9)	0.2052 (9)	0.5618 (7)	4.2 (2)
C(1)A	-0.0624(15)	0.0720(15)	0.2561(12)	4.3 (4)	C(1)B	0.5342 (14)	0.2208 (15)	0.6656 (12)	4.1 (3)
$\widehat{C(2)}A$	-0.1523(18)	0·1037 (18)	0.1710 (14)	6.0 (4)	C(2)B	0.6148 (15)	0.1184 (16)	0.6991 (13)	4.8 (4)
C(3)A	-0.1768(21)	0·0046 (21)	0.0666 (17)	8.1 (6)	C(3)B	0.6513 (18)	0.1375 (18)	0.8107 (14)	6.1 (4)
C(4)A	-0.1108(21)	-0.1226(22)	0.0552(17)	8.3 (6)	C(4)B	0.6095 (18)	0.2508 (18)	0.8864 (14)	6.2 (5)
C(5)A	-0.0249(19)	– 0·1559 (19)	0.1388 (15)	6.9 (5)	C(5)B	0.5246 (18)	0.3503 (18)	0.8534 (15)	6.3 (5)
C(6)A	0.0014 (15)	-0·0556 (16)	0.2427(12)	4.7 (4)	C(6)B	0.4842 (15)	0.3363 (15)	0.7410 (12)	4.4 (4)
C(7)A	0·0847 (15)	-0.0968 (15)	0.3275 (13)	4.6 (4)	C(7)B	0.3946 (15)	0.4410 (15)	0.7132 (12)	4.2 (4)
NĂ	0.1246 (11)	-0.0221(12)	0.4226 (9)	4.1 (3)	N <i>B</i>	0.3463 (11)	0.4362 (11)	0.6158 (9)	3.7 (3)
C(8)A	0.2083 (15)	-0.0823 (16)	0.5033 (13)	4.9 (4)	C(8)B	0.2494 (15)	0.5484 (15)	0.5949 (12)	4.5 (4)
O'A	0.0264 (9)	0.3415 (9)	0.5600 (7)	4.2 (2)	O'B	0.4644 (9)	0·2168 (9)	0.3561 (7)	3.7 (2)
C(1')A	0.0509 (14)	0.4070 (14)	0.6650 (12)	3.8 (3)	C(1')B	0.4415 (14)	0.2431 (14)	0.2663 (11)	3.8 (3)
C(2')A	-0.0075(16)	0.5370 (16)	0.6996 (13)	4.8 (4)	C(2')B	0.4970 (16)	0.1501 (16)	0.1804 (13)	5.1 (4)
C(3')A	0.0151 (18)	0.6094 (18)	0.8095 (15)	6.5 (5)	C(3')B	0.4782 (17)	0.1760 (18)	0.0848 (14)	5.8 (4)
C(4')A	0.0934 (20)	0.5534 (20)	0.8847 (16)	7.7 (5)	C(4')B	0.4037 (18)	0.2951 (18)	0.0734 (14)	6.1 (4)
C(5')A	0.1548 (20)	0.4221 (20)	0.8524 (16)	7.3 (5)	C(5')B	0.3522 (17)	0.3858 (17)	0.1558 (14)	5.6 (4)
C(6')A	0.1346 (15)	0·3487 (16)	0.7390 (13)	4.8 (4)	C(6')B	0.3715 (14)	0.3612 (14)	0.2541 (11)	3.9 (3)
C(7')A	0.2065 (15)	0.2205 (16)	0.7105 (13)	4.8 (4)	C(7')B	0.3269 (14)	0.4656 (14)	0.3386 (12)	3.9 (3)
N'A	0.2044 (11)	0.1481 (11)	0.6128 (9)	4.1 (3)	N' <i>B</i>	0.3319 (11)	0.4622 (11)	0·4306 (9)	3.7 (3)
C(8')A	0.2893 (16)	0.0193 (16)	0.5908 (13)	5.1 (4)	C(8)'A	0.2903 (14)	0.5862 (15)	0.5129 (12)	4.3 (4)
Oxo	0.2298 (9)	0.2181 (9)	0.4268 (7)	3.7 (2)					
(b) Ani	sotropic tempera	ature factors							
	x/a	y/b	z/c	U_{11}	U_{22}	U ₃₃	U_{12}	U_{13}	U_{23}
FeA	0.1049 (2)	0.1851 (2)	0.4687 (2)	3.31 (13)	3.35 (13	3) 4.90 (14)	0.01 (10)	1.22 (11)	1.68 (11)
FeB	0.3762 (2)	0.2883 (2)	0.4717 (2)	3·36 (13)	3 ∙33 (13	3) 4·48 (14)	- 0·06 (10)	1.15 (11)	1.64 (11)

Table 3. Idealized positional coordinates for the hydrogen atoms*

x/a	у/Ь	z/c		x/a	у/b	z/c
-0.201	0.199	0.183	HC(2)B	0.647	0.031	0.643
-0.242	0.026	0.001	HC(3)B	0.712	0.063	0.837
-0.128	-0.196	-0.021	HC(4)B	0.641	0.262	0.968
0.021	-0.253	0.127	HC(5)B	0.490	0.435	0.911
0.116	-0.198	0.310	HC(7)B	0.368	0.524	0.775
0.151	-0.113	0.537	HC(8)B	0.157	0.519	0.563
0.269	-0.164	0.466	HC(8)B	0.220	0.629	0.666
-0.068	0.580	0.644	HC(2')B	0.552	0.063	0.189
-0.028	0.707	0.835	HC(3')B	0.519	0.108	0.022
0.107	0.609	0.967	HC(4')B	0.388	0.314	0·001
0.213	0.380	0.909	HC(5')B	0.299	0.473	0.147
0.263	0.185	0.772	HC(7')B	0.286	0.554	0.324
0.368	0.026	0.565	HC(8')B	0.367	0.643	0.552
0.323	-0.007	0.661	HC(8')B	0.212	0.640	0.476
	$\begin{array}{c} x/a \\ -0.201 \\ -0.242 \\ -0.128 \\ 0.021 \\ 0.116 \\ 0.151 \\ 0.269 \\ -0.068 \\ -0.028 \\ 0.107 \\ 0.213 \\ 0.263 \\ 0.368 \\ 0.323 \end{array}$	$\begin{array}{cccccc} x/a & y/b \\ -0.201 & 0.199 \\ -0.242 & 0.026 \\ -0.128 & -0.196 \\ 0.021 & -0.253 \\ 0.116 & -0.198 \\ 0.151 & -0.113 \\ 0.269 & -0.164 \\ -0.068 & 0.580 \\ -0.028 & 0.707 \\ 0.107 & 0.609 \\ 0.213 & 0.380 \\ 0.263 & 0.185 \\ 0.368 & 0.026 \\ 0.323 & -0.007 \end{array}$	x/a y/b z/c -0.201 0.199 0.183 -0.242 0.026 0.001 -0.128 -0.196 -0.021 0.021 -0.253 0.127 0.116 -0.198 0.310 0.151 -0.113 0.537 0.269 -0.164 0.466 -0.028 0.707 0.835 0.107 0.609 0.967 0.213 0.380 0.909 0.263 0.185 0.772 0.368 0.026 0.565 0.323 -0.007 0.661	x/a y/b z/c -0.201 0.199 0.183 $HC(2)B$ -0.242 0.026 0.001 $HC(3)B$ -0.128 -0.196 -0.021 $HC(4)B$ 0.021 -0.253 0.127 $HC(5)B$ 0.116 -0.198 0.310 $HC(7)B$ 0.151 -0.113 0.537 $HC(8)B$ 0.269 -0.164 0.466 $HC(8)B$ -0.068 0.580 0.644 $HC(2')B$ -0.028 0.707 0.835 $HC(3')B$ 0.107 0.609 0.967 $HC(4')B$ 0.213 0.380 0.909 $HC(5')B$ 0.263 0.185 0.772 $HC(7')B$ 0.368 0.026 0.565 $HC(8')B$ 0.323 -0.007 0.661 $HC(8')B$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

* The hydrogen atoms are labelled by placing an H before the label of the associated carbon atom.

a Philips PW1100 computer-controlled X-ray diffractometer. This program investigates rows in the reciprocal lattice through the origin and scans the four most intense reflexions in the positive and negative θ region. The centres of gravity of these eight profiles are used in a least-squares refinement of the *d* spacing for that row.

Crystal data

 $C_{32}Fe_2H_{28}N_4O_5$, M = 660.4, triclinic, a = 10.949 (11), b = 11.064 (11), c = 13.812 (14) Å, $\alpha = 112.10$ (10), $\beta = 106.85$ (10), $\gamma = 77.41$ (10)°. U = 1473 Å³, $D_m = 1.49$ g cm⁻³ (by flotation), Z = 2, $D_c = 1.49$ g cm⁻³, F(000) = 680, $\mu = 10.6$ cm⁻¹ for Mo K α radiation ($\lambda = 0.7107$ Å). Space group $P\bar{1}$ (C_i^1).

Intensity measurements

Intensities were collected from a crystal having dimensions $0.20 \times 0.17 \times 0.17$ mm with a Philips PW1100 diffractometer and Mo Ka radiation. A unique data set was collected out to 2θ (Mo Ka)=40°. The intensities of 2720 independent reflexions were measured; of these, 1958 obeyed the condition $F_o^2 > 3\sigma(F_o^2)$, and only these were used in subsequent calculations. Three standard reflexions, monitored at two-hourly intervals, showed no significant variations in intensity.

The data were collected by the θ -2 θ scan technique with a symmetric scan range of $\pm 0.8^{\circ}$ in 2 θ from the calculated scattering angle. The scan rate was 0.05° per sec. The Mo K α radiation was monochromated with a flat graphite monochromator crystal and no

Fig. 2. $[Fe(salen)]_2O$. Labelling of the atoms for one half of the dimer. An A or B suffix is added to the labels in Table 2 to distinguish between the two chemically equivalent salen ligands.

reflexion was sufficiently strong to require the insertion of an attenuation filter.

The intensities were processed with a program written specifically for the PW1100 diffractometer (Hornstra & Stubbe, 1972). The background-corrected intensities were assigned standard deviations according to the formula

$$\sigma(I) = [CT + (t_c/t_b)^2 (B_1 + B_2) + (pI)^2]^{1/2}$$

where CT is the total integrated peak count obtained in a scan time t_c , B_1 and B_2 are background counts each obtained in time t_b , and

$$I = CT - (t_c/t_b) (B_1 + B_2)$$

The value of p was selected as 0.04 to prevent unduly high weight being given to strong reflexions. The values of I and $\sigma(I)$ were then corrected for Lorentz and polarization effects in the normal fashion.

Neither extinction nor absorption corrections were applied. For the crystal used, μR varies between 0.21 and 0.18 and the estimated maximum effect on the intensities caused by neglect of absorption is less than 4%.

Structure solution and refinement

The structure was solved by standard vector methods. In the least-squares calculations discussed here, the function $\sum w(|F_o| - |F_c|)^2$ was minimized, where $|F_o|$ and $|F_c|$ are the observed and calculated structure amplitudes and w is the weight of each individual reflexion.

A zero-moment test (Howells, Phillips & Rogers, 1950) was performed on the intensities and the result (see Fig. 1) strongly indicates a centrosymmetric structure. This was confirmed by the subsequent structure solution. Assuming space group $P\bar{1}$ and an Fe-Fe distance of 3.4 Å, the three-dimensional Patterson map was solved in a straightforward manner for the two iron atom positions. A structure-factor calculation based on these initial iron atom coordinates gave $R_1 = 40.4$ and $R_2 = 50.2$ where

$$R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|$$
$$R_{2} = (\sum w(|F_{o}| - |F_{c}|)^{2} / \sum w|F_{o}|^{2})^{1/2}$$

The first three-dimensional difference synthesis based on the calculated phases and observed structure amplitudes gave approximate coordinates for five of the nine oxygen and nitrogen atoms. A second difference

and

Fig. 3. Stereoscopic illustration of the molecular geometry of [Fe(salen)]₂O, including the hydrogen atoms.

synthesis gave the positions of all the remaining nonhydrogen atoms. Several cycles of full-matrix leastsquares refinement, varying alternately the positional parameters, then isotropic temperature factors of all atoms, gave $R_1 = 0.073$, $R_2 = 0.086$. To allow the simultaneous refinement of all parameters with the limited

Reflexions which do not obey the condition $F_o^2 > 3\sigma(F_o^2)$ are indicated by an asterisk.

enteristen enteristen in den standen in den standen in den standen som som som standen in den som som som som s

μ -OXO-BIS-[N, N'-ETHYLENEBIS(SALICYLALDIMINATO)IRON(III)]

Table	4	(cont)	
Iauc	+	(com.)	

				I I			I 70 75 -2 136 152 -3 136 152 -1 156 156 -1 156 156 -1 156 156 -1 156 156 -1 156 156 -1 157 156 -1 157 156 -1 157 156 -1 157 156 -1 157 156 -1 157 156 -1 157 156 -1 157 157 -1 157 157 -1 157 157 -1 157 157 -1 157 157 -1 157 157 -1 157 157 -1 157 157 -1 157 157 -1 157 -1 15	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 4 100 104 0 4 30 -0.14 0 4 30 -0.14 0 4 20 -0.14 1 5 201 20.4 1 5 427 20.4 2 5 427 5.18 10.1 2 5 427 5.19 10.4 3 5 10.8 -10.2 10.4 5 10.8 -10.2 10.4 10.2 5 20.4 -20.4 -20.4 10.4 5 10.8 -10.4 -20.1 10.4 10.2 5 20.4 -20.4 -20.4 10.4 10.2 10.4 10.2 10.4	2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 	3	2 - 6 - 26 - 86 3 - 6 - 45 - 58 4 - 6 - 45 - 59 5 - 6 - 46 - 74 - 6 - 24 - 13 8 - 6 - 194 - 21 3 - 6 - 194 - 21 1 - 7 - 87 - 34 1 - 7 - 87 - 34 3 - 5 - 31 3 - 19 - 19 - 19 - 19	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
					2000 2000 2000 2000 2000 2000 2000 200			

computer store available, final refinement was by the block-diagonal least-squares method. Four cycles of refinement, with anisotropic thermal parameters for the two iron atoms, gave $R_1=0.059$, $R_2=0.072$. The

idealized positions of all hydrogen atoms were then calculated assuming the appropriate trigonal or tetrahedral geometry and a C-H distance of 1.05 Å. A final structure factor calculation with the hydrogen

1939

atoms included and each given a temperature factor 1.0 Å^2 greater than the *B* of the bonded carbon atom gave $R_1 = 0.052$, $R_2 = 0.062$.

The labelling scheme used is defined in Fig. 2 and the final values of the positional and vibrational parameters are listed in Table 2, with their estimated standard deviations derived from the inverse least-squares matrix. Table 3 lists the idealized hydrogen atom positions and Table 4 the observed and calculated structure factors.

The scattering factors were those tabulated by Ibers (1962) and the major programs used during the refinement were modified versions of ORFLS (Busing, Martin & Levy, 1962), the SF block-diagonal least-squares program of Shiono (1968) and the Fourier summation program of White (1965). Fig. 3, 4 and 6 were drawn with the program ORTEP (Johnson, 1965). All calculations were performed on the Monash University C.D.C. 3200 computer.

Table 5. Selected intramolecular distances and	l angl	es ir	n
$[Fe(salen)]_2O^*$			

183

(a) Distances (A)					
	A	A'	В	B'	
Fe—oxo	1.78 (1)		1.78 (1)		
FeN	2.12(1)	2.12 (1)	2·11 (1)	2.12 (2)	
FeO	1.93 (1)	1.92 (1)	1.91 (1)	1.93 (1)	
O - C(1)	1.32 (2)	1.33 (2)	1.33 (2)	1.32 (2)	
C(1) - C(2)	1.40(2)	1.40 (2)	1.41 (2)	1.44 (2)	
C(1) - C(6)	1.40(2)	1.41(2)	1.43 (2)	1.41 (2)	
C(2) - C(3)	1.44(2)	1.40 (2)	1.42 (3)	1.40 (3)	
C(3) - C(4)	1.41 (3)	1.39 (3)	1.38 (2)	1.43 (3)	
C(4) - C(5)	1.38 (3)	1.42 (3)	1.40 (3)	1.37 (2)	
C(5) - C(6)	1.44(2)	1.44(2)	1.44 (3)	1.43 (3)	
C(6) - C(7)	1.42 (2)	1.44 (2)	1.44 (2)	1.42 (2)	
C(7)-N	1.27(2)	1.28(2)	1.28(2)	1.27 (2)	
N - C(8)	1.49 (2)	1.50(2)	1.51 (2)	1.50 (2)	
C(8) - C(8')	1.52 (2)		1.55 (3)		
0N	2.75 (2)	2.73 (1)	2·73 (1)	2.75 (1)	

Discussion of the structure

The crystallographic asymmetric unit contains one discrete [Fe(salen)]₂O molecule (Fig. 1) which consists of two Fe(salen) moieties linked by a single oxygen atom bridge. Both iron atoms are five coordinate with approximately square pyramidal geometry. Pertinent intramolecular distances and angles are listed in Table 5 and are in good agreement with the average values for salen reported by Lingafelter & Braun (1966) and Calligaris, Nardin & Randaccio (1972). The packing of the two molecules in the unit cell is illustrated in Fig. 4. There are no unusual intermolecular contacts and, excluding the hydrogen atoms, the shortest intermolecular contact is 3.32 Å between atoms O'A and C(8')B(-x, 1-y, 1-z).* If the calculated hydrogen atom positions are included, the shortest intermolecular contact is then 2.32 Å between atoms HC(5)B and HC(5)B(1-x, 1-y, 2-z).

As in $[Fe(salen)]_2O.2py$, $[Fe(salen)]_2O.CH_2Cl_2$ and Fe(salen)Cl monomer (Gerloch & Mabbs, 1967), the two salen ligands in unsolvated $[Fe(salen)]_2O$ have the 'asymmetric umbrella' conformation which appears to be preferred in pentacoordinate species. In this arrangement the ethylenediamine bridge has a *gauche* conformation and the two salicylaldimine groups of each ligand are both bent away from the bridging oxygen atom. The degree of bending can conveniently be described (Calligaris, Nardin & Randaccio, 1972) by the angles α and β (Fig. 5) between the coordination plane and the planes defined by the two salicylaldimine residues.

Table 7 lists, for $[Fe(salen)]_2O.2py$, $[Fe(salen)]_2O.$ CH₂Cl₂ and unsolvated $[Fe(salen)]_2O$, the angles α and

* The symmetry transformation in parentheses is that to be applied to the coordinates listed in Table 2.

(b) Angles (°)

() **D**! .

oxo-FeN	104.8 (5)	102.5 (5)	100.3 (5)	105.7 (5)
oxo-FeO	107.3 (5)	111.8 (5)	111.4 (5)	107.8 (5)
OFeN	85.5 (5)	85.1 (5)	85.6 (5)	85.4 (5)
0FeN'	148.3 (5)	141.8 (5)	141.2 (5)	150.1 (5)
Fe - O - C(1)	128.7 (9)	134.8 (9)	134.9 (9)	130-4 (9)
O - C(1) - C(2)	117.2 (1.5)	117.6 (1.4)	118.0 (1.4)	118.2 (1.4)
C(2) - C(1) - C(6)	121.4 (1.6)	121.0 (1.5)	121.0 (1.5)	119.1 (1.4)
O - C(1) - C(6)	121.3 (1.5)	121.3 (1.4)	121.0 (1.4)	122.6 (1.4)
C(2) - C(1) - C(6)	121.4 (1.6)	121.1 (1.5)	121.0 (1.5)	119.1 (1.4)
C(2) - C(3) - C(4)	117.9 (2.0)	120.8 (1.9)	122.5 (1.8)	119.7 (1.7)
C(3) - C(4) - C(5)	$123 \cdot 2(2 \cdot 1)$	121.1 (2.0)	119·9 (1·8)	120.7 (1.8)
C(4) - C(5) - C(6)	118.7 (1.9)	118.1 (1.9)	120.0 (1.7)	120.2 (1.7)
C(5) - C(6) - C(1)	119.3 (1.6)	119.3 (1.6)	118.5 (1.5)	120.2 (1.5)
C(5) - C(6) - C(7)	116.4 (1.6)	115.7 (1.6)	116.8 (1.5)	116.3 (1.4)
C(1) - C(6) - C(7)	124.1 (1.6)	124.9 (1.6)	124.7 (1.5)	123.2 (1.4)
C(6) - C(7) - N	125.6 (1.6)	122.4 (1.6)	122.5 (1.5)	126.0 (1.5)
C(7)-N-Fe	123.7 (1.1)	129.9 (1.1)	129.9 (1.1)	124.6 (1.1)
C(7) - N - C(8)	118.7 (1.4)	118.7 (1.4)	118.4 (1.3)	118.2 (1.3)
C(8)–N––Fe	116.9 (9)	111.2 (9)	111.6 (9)	116.8 (9)
N - C(8) - C(8')	108.8 (1.4)	107.0 (1.4)	106.4 (1.3)	108-1 (1-3)
FeA - oxo - FeB	144.6 (6)			

Table 5 (cont.)

* To obtain full atom labels (consistent with Table 1) add the appropriate A, A', B or B'.

Fig. 4. Contents of the unit cell viewed perpendicular to the ac^* , ab^* and a^*b planes respectively.

 β and the torsional angles N-O-O'-N' and N-C(8)-C(8')-N'. This Table also lists, for each salen moiety, the displacements from the coordination plane of the iron atoms and the two ethylene carbon atoms.

An examination of Table 7 reveals certain differences and certain similarities in the ligand conformations of the three structures. The most striking conformational difference is the variation of the angle y(Fig. 5) which in each salen ligand is the angle between the planes of the two salicylaldimine residues. The yangles in the two solvated structures are markedly greater than those in the unsolvated structure (*i.e.* the 'umbrella' shape is more pronounced in the solvated structures) and this is best appreciated by reference to Fig. 6 where the three molecules are drawn in similar orientations. However in all three cases the two halves of each dimer have very similar orientations relative to each other. In fact, when the $[Fe(salen)]_2O$ molecules in the pyridinated and unsolvated structures are compared by viewing down the Fe-Fe direction (see Fig. 6), the two are virtually indistinguishable. The differing γ

Fig. 5. 'Umbrella' conformation for salen, defining the angles α , β and γ of Table 6.

Table 6. Equations of least-squares planes for [Fe(salen)]₂O and distances of individual atoms (Å) from the planes

X, Y, Z are coordinates in Å referred to an orthogonal system of axes having X along the a axis, Y in the (a,b) plane and Z along the c^* axis. Fractional coordinates x, y, z in the triclinic system are related to X, Y, Z by the matrix equation.

[10·949	2.412	-4·004]	$\begin{bmatrix} x \end{bmatrix} \begin{bmatrix} X \end{bmatrix}$
0	10.798	- 4.430	v = Y
[0	0	12·455	$\begin{bmatrix} z \end{bmatrix} \begin{bmatrix} Z \end{bmatrix}$

(I) Plane through O $C(6)A$, $C(7)A$, NA	A, C(1)A,	C(2) <i>A</i> , C(3)	A, C(4)A	, C(5)A
$0.9150 X \pm 1$	0.3341 Y -	0.2261 Z + 2.2	676 = 0	
0.01(1)	$C(3) \Lambda$	-0.01(2)	C(6)	0.03 (2
OA = 0.01(1)	C(3)A	-0.01(2)	C(0)A = C(7)A = -	0.05(2)
C(1)A = 0.02(2)	C(4)A	0.01(2)	C(I)A =	-0.03(2)
C(2)A = 0.02(2)	C(5)A	0.01(2)	INA	0.02 (2
(II) Plane through	O'A, C(1	$^{\prime})A, C(2^{\prime})A,$	C(3')A,	C(4')A
C(5')A, C(6')A, C(6'	L(7')A, N'A	A		
0.9091X + 0	0.4127 Y -	0.0566Z + 0.8	3593 = 0	
O'A = -0.06(1)	C(3')A	0.06 (2)	C(6')A -	-0.04 (2)
C(1')A = -0.03(2)	C(4')A	0.01 (2)	C(7')A -	-0.01 (2
C(2')A = 0.04(2)	C(5')A	-0.06(2)	N'A	0.09 (1
	- (-)	. ,		
(III) Plane through (A. NA. C)'A. N'A		
$0.8869 Y \perp$	$-0.3541Y_{-}$	-0.2966Z+2.	5899 = 0	
0.00014	0 55411	02/00212	0.50	1 (2)
OA = 0.05 (1	()	Fe-A	0.28	(2)
NA = -0.06 (1)	C(8)A	-0.31	(2)
O'A - 0.05 (1)	l)	C(8')A	0.31	(2)
N'A 0.06 (1	l)			
(IV) Plane through	OB, C(1)E	B, C(2)B, C(3)	B, C(4)	B, C(5)B
C(6)B, C(7)B, N	NB			
-0.8870 X	- 0.4508 Y-	-0.1004Z+3	$\cdot 8497 = 0$	
OB = 0.07(1)	C(3)B	0.05(2)	C(6)B	-0.02(2
$C(1)_{R} = 0.03(2)$	C(A)B	-0.02(2)	C(7)B -	-0.01 (2
C(1)B = 0.05(2)	C(5)B	-0.03(2)	C(8)B	0.08(1)
C(2)B = 0.05(2)	C(J)D	-005(2)	C(0)D	0 00 (1
(V) Plane through O'	'B. C(1')B.	C(2')B, C(3')	B. C(4')E	B. $C(5')B$
C(6')B C(7')B	_, _(_ , _, √ <i>B</i>	-(-)-,-(-)		, - (- ,
	0.2100 V	0.24907 1 5	.4060 - 0	
- 0.88087 -	-0.31991 -	-0.3409Z + 3	-4900-0	0.05 (2
O'B = 0.02(1)	C(3')B	-0.05(2)		0.03(2
C(1')B = 0.04(2)	C(4')B	0.00(2)	C(T)B	-0.05(2
C(2')B = -0.03(2)	C(5')B	0.04 (2)	N'B -	-0.02(1
(VI) Plane through (D <i>B</i> , N <i>B</i> , C	<i>)'B</i> , N' <i>B</i>		
-0.8663X	-0.3608Y	-0.3456Z+5	$\cdot 5060 = 0$	
OB = -0.08 (1)	Fe-B	0.5	72 (2)
NB 0.08 (ñ	C(8)B	0.3	(2)
O'R 0.08(1)	C(8')B	-0.36	
	1)		0.50	<i>(4)</i>
D = 0.08 (1)			

angles also seem to have little effect on the displacements of the iron atoms from their respective coordination planes. These displacements are remarkably constant (see Table 7), ranging between 0.55 and 0.58 Å, and are very similar to the values listed in Table 1 for the other LFe–O–FeL structures studied to date. They may also be compared with the iron atom displacements of 0.475 Å in α -chlorohaemin (Koenig, 1965), 0.455 Å in methoxyironmesoporphyrin IX-dimethylester (Hoard, Hamor, Hamor & Caughey, 1965) and 0.38 Å in chloroirontetraphenylporphine (Hoard, Cohen & Glick, 1967).

The Fe-O-Fe bridge in unsolvated [Fe(salen)]₂O is symmetrical within experimental error, the Fe-O (bridge) bond length being 1.78 (1) Å and typical of the short Fe-O (bridge) distances observed in the other oxo-bridged iron(III) structures which have so far been studied (Table 1). However, although the Fe-O-Fe angles in [Fe(salen)]₂O. 2py, [Fe(salen)]₂O. CH₂Cl₂ and unsolvated [Fe(salen)]₂O are very similar with an average of 142° , they are $20-30^\circ$ smaller than the Fe–O–Fe angles in [Fe(HEDTA)]₂O²⁻, [Fe(TPP)]₂O, [Fe(N-n $propyl-sal_{2}O$ and $[Fe(N-p-chlorophenyl-sal_{2}]_{2}O$ (Table 1). It is difficult to account for this large angular difference. Intermolecular (crystal packing) forces do not seem to be an important factor since the Fe-O-Fe geometries in [Fe(salen)]₂O.2py, [Fe(salen)]₂O.CH₂Cl₂ and unsolvated [Fe(salen)]₂O are virtually identical. The smaller Fe-O-Fe angle in [Fe(salen)]₂O could perhaps be interpreted in terms of a smaller degree of π -bonding with the oxygen atom. Yet if, as suggested by Coggon, McPhail, Mabbs & McLachlan (1971), the relative lengths of the Fe-O (bridge) bonds are taken as a measure of the degree of multiple bonding, then this must be the same in all cases. Perhaps the best explanation (Coggon et al., 1971) is to attribute the difference to intramolecular forces and assume that the angle at the oxygen atom is readily distorted whereas the Fe-O bond lengths are not.

We thank Dr K. S. Murray and Mr A. van den Bergen for valuable assistance and discussions. One of us (J.E.D.) acknowledges the award of a Monash Graduate Scholarship, and we thank the Australian Research Grants Committee for financial support.

	Table 7.	Conformational	data* for	· [Fe	(salen))]2()
--	----------	----------------	-----------	-------	---------	------	---

	NOON (°)	d (Å)	α (°)	β (°)	γ (°)	d_1 (Å)	d2 Å)	φ (°)
[Fe(salen)]₂O.2py†	15.7	0.570	19·7 9.9	21·4 15·8	41·0 24·1	-0.42 - 0.46	0·36 0·32	40·3 44·8
$[Fe(salen)]_2O.CH_2Cl_2$	8·0	0.570	11.28	23·57 14·67	34·3 26·4	-0.22 -0.35	0·40 0·47	35·2 43·6
[Fe(salen)] ₂ O§	4.5	0·581 0·572	4·50 2·50	14·25 15·02	10·7 16·2	-0.31 - 0.37	0·31 0·31	39·8 41·2

* For each Fe(salen) moiety, NOON and φ are the torsional angles N-O-O'-N' and N-C(8)-C(8')-N' respectively and d, d_1 , d_2 are the displacements from the coordination plane of atoms Fe, C(8) and C(8') respectively. The angles α , β and γ are defined in Fig. 5.

† Data from Calligaris, Nardin & Randaccio (1972).

‡ Calculated from the coordinates given by Coggon, McPhail, Mabbs & McLachlan (1971).

§ This work.

Fig. 6. (a) [Fe(salen)]₂O.2py (Gerloch, McKenzie & Towl, 1969), (b) [Fe(salen)]₂O.CH₂Cl₂ (Coggon, McPhail, Mabbs & McLachlan, 1971), and (c) unsolvated [Fe(salen)]₂O (this work). In each case, the diagram on the left is drawn with the Fe-O-Fe plane parallel to the plane of the paper and that on the right is drawn looking down the Fe-Fe direction.

References

- Atovmyan, L. O., D'YACHENKO, O. A. & SOBOLEVA, S. V. (1970). Zh. Strukt. Khim. 11, 557–558.
- BLOW, D. M. (1960). Acta Cryst. 13, 168.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- CALLIGARIS, M., NARDIN, G. & RANDACCIO, L. (1972). Coord. Chem. Rev. 7, 385–403.

- Coggon, P., McPhail, A. T., MABBS, F. E. & McLachlan, V. N. (1971). J. Chem. Soc. (A), pp. 1014–1019.
- DAVIES, J. E. & GATEHOUSE, B. M. (1972). Cryst. Struct. Commun. 1, 115-120.
- DAVIES, J. E. & GATEHOUSE, B. M. (1973). Acta Cryst. In the press.
- GERLOCH, M. & MABBS, F. E. (1967). J. Chem. Soc. (A), pp. 1598-1608.
- GERLOCH, M., MCKENZIE, E. D. & TOWL, A. D. C. (1969). J. Chem. Soc. (A), pp. 2850–2858.
- HOARD, J. L., COHEN, G. H. & GLICK, M. D. (1967). J. Amer. Chem. Soc. 89, 1992–1996.
- HOARD, J. L., HAMOR, M. J., HAMOR, T. A. & CAUGHEY, W. S. (1965). J. Amer. Chem. Soc. 87, 2312–2319.
- HOFFMAN, A. B., COLLINS, D. M., DAY, V. W., FLEISCHER, E. B., SRIVASTAVA, T. S. & HOARD, J. L. (1972). J. Amer. Chem. Soc. 94, 3620–3626.
- HORNSTRA, J. & STUBBE, B. (1972). *PW*1100 Data Processing Program. Philips Research Laboratories, Eindhoven, Holland.
- Howells, E. R., Phillips, D. C. & Rogers, D. (1950). Acta Cryst. 3, 210-214.
- IBERS, J. A. (1962). In International Tables for X-ray Crystallography, Vol. III. Birmingham: Kynoch Press. JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794, Oak
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- KOENIG, D. F. (1965). Acta Cryst. 18, 663-673.
- LEWIS, J., MABBS, F. E., RICHARDS, A. & THORNLEY, A. S. (1969). J. Chem. Soc. (A), pp. 1993–1997.
- LINGAFELTER, E. C. & BRAUN, R. L. (1966). J. Amer. Chem. Soc. 88, 2951–2956.
- LIPPARD, S. J., SCHUGAR, H. & WALLING, C. (1967). *Inorg. Chem.* **6**, 1825–1831.
- PFEIFFER, P., BREITH, E., LÜBBE, E. & TSUMAKI, T. (1933). Ann. Chem. 503, 84–130.
- SHIONO, R. (1968). SF. Block-diagonal least-squares refinement program. Univ. of Pittsburgh, U.S.A.
- WHITE, J. C. B. (1965). Melbourne University Fourier Program MUFR3. See J. S. ROLLETT (1961), in Computing Methods and the Phase Problem in X-ray Crystal Analysis, edited by PEPINSKY, ROBERTSON & SPEAKMAN, p. 87. Oxford: Pergamon Press.

Acta Cryst. (1973). B29, 1942

A Neutron-Diffraction Study of Anhydrous Uranium Tetrachloride

BY J.C. TAYLOR AND P.W. WILSON

Australian Atomic Energy Commission, Research Establishment, Private Mail Bag, Sutherland, N.S.W. 2232, Australia

(Received 30 March 1973; accepted 7 May 1973)

A neutron diffraction powder study of UCl₄ was carried out, and confirmed the structure derived in an earlier X-ray diffraction powder study. The space group is $I4_1/amd$ (D_{4h}^{19} No. 141). The X-ray positional parameters for Cl were found to need revision and are now: $y_{Cl} = 0.3125$ (5) and $z_{Cl} = 0.9261$ (5). The two sets of U-Cl distances in the coordination dodecahedron were found to be more nearly equal: U-Cl=2.869 (3) (4×) and U-Cl=2.638 (4) Å (4×). The angles these bonds make with the $\overline{4}$ axis are 32.7 (1) and 77.9 (1)°.

Introduction

UCl₄, ThCl₄, PaCl₄ and NpCl₄ are said to be isostructural (Brown & Jones, 1967; Elson, Fried, Sellers & Zachariasen, 1950; Fried & Davidson, 1948; Mooney, 1949). The latter author found UCl₄ to be bodycentred tetragonal with the space group $I4_1/amd$ (D_{4h}^{19} No. 141) and the unit-cell dimensions a = 8.296 (9) and